As a society, we place many demands on the first responders who safeguard our communities. That means that the mission critical technologies our public safety officials use every day must meet exceedingly high standards as well.

New 4G LTE broadband networks will enable powerful and innovative solutions for better protecting our first responders, providing them with the real-time information, the control, the reliability, the security and the performance that are at the core of mission critical technology.

But as important as 4G LTE technology is in and of itself, it’s even more important as a driving force behind something bigger. Something much bigger. As it combines with other new and legacy network elements and applications, LTE is an integral part of an innovative and powerful new network structure that will transform mission critical public safety communications.

How can your public safety organization begin to prepare for the 4G future? A good way to start is by examining three key areas of next-generation networks: applications, infrastructure and devices.

4G LTE NETWORKS WILL SUPPORT ADVANCES IN COMMUNICATIONS NOT YET DREAMED ABOUT

Communications networks have supported the mission critical needs of government and public safety agencies for nearly a century. When Motorola first began delivering police radios back in 1930, no one could have imagined that first responders would one day use their communications systems to run license plate checks, to file traffic tickets or to monitor high-crime areas from miles away via video surveillance systems.

But that is exactly what they are doing today. In fact, those applications are not only possible but also common in the day-to-day operations of many public safety organizations around the globe. And they are just the tip of the iceberg. With the advent of 4G LTE networks, a plethora of new communications applications become available for public safety and other government agencies. When added to today’s existing narrowband applications, these 4G networks will support advances in communications not yet dreamed about.

Simple text messaging applications in widespread use today are making way for a wide variety of rich media applications, enabling:

MORE REAL-TIME ACCESS TO INFORMATION

Thanks to the increased bandwidth delivered by LTE networks, you can easily extend the office to the vehicle or even onto a responder’s belt. Advanced mobile office and new productivity applications enable content-rich database lookups and remote analytics leading to greater productivity and reduced costs.

ANYWHERE, ANYTIME CONNECTIONS

Using 4G systems, police officers have access to high-speed connectivity no matter where they are — whether they are on the street, in the car or at the scene. Officers can count on high-speed broadband data as well as new critical location aware services to keep them connected anywhere, anytime.
But broadband communications networks enable so much more. A database query no longer delivers just a small paragraph of text-based data. Instead, these queries deliver information-rich, easy-to-read reports filled with images such as mugshots and even video clips. And this information arrives immediately. No more waiting three to 10 minutes or more for a simple image to download or for a report filed from the patrol car to upload to the central database. When seconds and minutes count, high-speed broadband communications can truly make a difference.

- Police officers can access video of a crime in progress and check maps while en route to a scene to determine how best to approach a building unseen, giving them access to life-saving information.
- Instead of a child abduction alert just giving a description of a car, these alerts might include a high-resolution image of the child along with a detailed sketch of the perpetrator. And they can be downloaded not only to first responders but to all municipal employees in just seconds.
- As an alternative to waiting for the individuals involved in an accident to call in to report it, video surveillance cameras might automatically trigger an alarm to alert the command center when an accident occurs. If that accident involves hazardous materials, first responders could also receive detailed instructions on handling that hazardous material on the way to the scene. Meanwhile, municipal authorities could simultaneously be alerted to begin organizing any necessary evacuations of the accident area.

Broadband networks also enable municipalities to improve workforce productivity and improve community response. The ability to reduce gridlock and improve disaster response is enabled through dynamic mapping, weather and traffic flow applications.
- Municipal transportation departments can improve road safety through better monitoring of traffic signals and road conditions.
- Safety inspectors can pull up information such as inspection histories and file reports directly from the site instead of waiting until they get back to the office.
- Maintenance workers can make use of high-speed connections to access step-by-step maintenance procedures and file work orders directly from the field reducing overtime costs resulting from filing paperwork at the end of the day. Additionally, staff can be rerouted to address higher priority repair jobs in real-time, thereby increasing efficiency.
- Port authorities can use tracking systems to account for every single item that arrives via the water, thus improving security.

The bottom line is that Public Safety LTE networks are a new platform on which municipalities and public safety organizations can both utilize the data applications in place today with faster, more responsive performance. This will increase their utility as well as offer access to a whole array of advanced, multimedia applications that take advantage of key enablers including:
- Bi-directional vehicular video
- Location aware real-time services
- Mobile office, in-field productivity
- Multimedia command and control
- Dynamic mapping, weather and traffic flows
- Content-rich lookups to complex databases
THE CRITICAL ROLE OF TODAY’S NARROWBAND VOICE AND DATA NETWORKS IN A BROADBAND ENVIRONMENT

Today’s mission critical, public safety networks will continue to provide uncompromising services for two-way voice and critical data applications, offering the performance, coverage, reliability and unique call features demanded by public safety. With the introduction of LTE networks, public safety communications systems have the opportunity to supplement their critical voice and data services with enhanced multimedia applications. By developing strong and meaningful interactions between the narrowband public safety and broadband networks, as well as collaborations between two-way radios and data devices, public safety organizations have all the assurances of their mission critical voice in times of crisis with all the advantages of cutting edge, multimedia services.

Integrated data services on narrowband public safety networks will provide the most wide-reaching geographic coverage for many years to come and first responders and government agencies will continue to use these networks for many lower data rate applications. Meanwhile, new broadband networks will augment existing narrowband networks to support more bandwidth-intense, rich media applications in concentrated regions.

Even when LTE systems are widely deployed, narrowband systems will continue to play a key role in mission critical communications. Today’s mission critical narrowband communications networks have literally hundreds of features that have been built into talk groups for voice, from subsecond push-to-talk response times to direct radio-to-radio communications. Next-generation public safety communication systems support interoperability between the existing narrowband mission critical voice equipment and broadband equipment to deliver unprecedented functionality to first responders.

“It will be many years, if ever, before LMR systems are replaced entirely. Before LMR systems could be supplanted, broadband services would first need to be deployed to the level that provides the same extensive coverage that mission critical voice systems provide, including in-building coverage in many instances. Because coverage area decreases as data rate increases, covering the same area at the same level of reliability with broadband services will require even more sites than the number used today for voice communications.”

-Harlin McEwen, Public Safety Spectrum Trust, in response to FCC questions on October 1, 2009
LTE NETWORKS: A LOOK AT THE TECHNOLOGY

LTE is a standards-based technology that delivers something that many public safety and governmental organizations have been requesting for years: a cost-effective way to meet their broadband communications needs and one that gives them a greater selection of devices and applications. LTE technology has been mandated for use in the public safety broadband network that will be built by FirstNet and others.

Key technology enablers of LTE is its use of Orthogonal Frequency Division Multiplexing (OFDM) air interface, advanced antenna techniques including Multiple-Input Multiple-Output (MIMO) and beamforming, flat all-IP architectures, and a common IP core. The commercial wireless industry is seeing strong market adoption rates for LTE leading to the necessary volumes for driving economies of scale. Within a decade, it is anticipated that the majority share of commercial wireless networks will utilize LTE technology platforms.

The LTE technology is available in either paired Frequency Division Duplex (FDD) or unpaired Time Division Duplex (TDD) spectrum configurations. With FDD-based LTE systems, the uplink and the downlink transmit on different frequencies, or paired frequencies. This is the traditional configuration for the cellular industry as well as public safety narrowband technologies and is generally preferred when paired spectrum is available. TDD-based systems commonly referred to as TD-LTE, share the same spectrum for both the downlink and uplink communications. The system can be configured to allocate a preferred amount of channel capacity for downlink and uplink communications.

The United States has allocated 20 MHz of paired spectrum in the 700 MHz band for public safety, allowing a 10 MHz channel. Some commercial mobile carriers have selected FDD-based LTE for 4G services, offering the opportunity for public safety agencies to consider leveraging their LTE devices to roam onto commercial carrier networks. Outside the United States, regulators are considering spectrum allocations for public safety broadband use and will be the determining factor in the technology for satisfying their broadband needs.
THE BENEFITS OF STANDARDIZATION

The fact that both commercial and private systems will be built using the same technology offers several benefits to public safety and government agencies. LTE will benefit from a rich ecosystem of devices spurred by the standards-based designs, open intellectual property environments, commitments from chipset manufacturers, large communities of developers and interest from consumer electronics manufacturers. Of course, LTE devices supporting critical public safety services will need to support many of the public safety features and design considerations used today, including:

- Interoperability with existing LMR networks
- Direct-mode, device-to-device communications
- High performance battery, radio, antenna and audio
- Ergonomics based on “high velocity human factor” industrial design

It is likely that public safety devices will benefit greatly from the economies of scale supporting certain device components because LTE is anticipated to surpass the critical volumes required to drive down component costs.

Of course, the most acceptable LTE public safety devices will still require further specialization to best serve first responders and withstand the challenging environments they participate in on a daily basis.

MEETING THE UNIQUE DEMANDS OF PUBLIC SAFETY

But it is important to remember that the mission critical needs of public safety put unique demands on any communications network. Demands that must be considered in network design. Demands that many commercial networks are not intended to meet.

Today’s public safety networks have been built to withstand any emergency, from earthquakes and hurricanes to forest fires and floods. In September of 2008, for example, the public safety network was the only system that continued to operate in the face of Hurricane Ike’s 100-mile-an-hour winds and 15-foot flood waters.

Because of public safety’s need to support mission critical communications, designing an LTE broadband network for public safety is a lot different than creating one for commercial users. Public safety networks are built for “worst case scenarios,” while commercial networks are designed for “best effort.” Public safety networks, by necessity, are generally hardened to withstand hurricane force winds. They have back-up generators at almost every tower site. They are built to guarantee a certain level of service so that first responders never find themselves without the ability to communicate.

While the usage patterns on commercial networks are typically relatively easy to predict, the same is not true of public safety networks. First responders never know when or where an emergency might occur, so public safety networks must be built to support sudden, unexpected spikes in usage in any portion of the network. In contrast, cellular networks can be designed around expected surges in traffic, like the surge that occurs in Manhattan during rush hour.

“We suffered a lot of losses throughout the area. We lost utilities. We lost electricity. We lost telephones. We lost cell phones,” says Fire Chief C.T. Anderson of the Santa Fe Fire Department. “But we were able to continue to operate without any fears because we had our radio system.”
COMING TO A MUNICIPALITY NEAR YOU:
A WIDE ARRAY OF 4G LTE DEVICES

A variety of 4G LTE devices targeting public safety officials and municipalities are becoming available, including:

DATA ADAPTORS
Adaptors that connect using standard data interfaces bring high-speed LTE broadband connections to existing laptops and computing platforms.

RUGGED HANDHELDs
Portable data devices with advanced display and interface technologies offering survivability and performance in the most demanding environments to support operations in the field.

RUGGED IN-VEHICLE EQUIPMENT
In-vehicle, LTE mobile radios offer wide area connections to mobile applications. Integrated WLAN access point functionality creates a “travelling hotspot” within and around the vehicle to allow connection to many Wi-Fi capable devices.

FIXED DEVICES
With LTE, a wider variety of fixed location devices will be available to support sensors and alarms and other “unmanned” devices such as parking meters or video surveillance systems.

NON-RUGGEDIZED EQUIPMENT COMES AT A COST
When it comes to selecting the right device to operate across their LTE networks, public safety organizations must keep one thing in mind: the latest and greatest 4G LTE commercial devices simply will not meet the unique needs of public safety agencies. No matter how tempting it may be to purchase less costly, non-ruggedized commercial equipment to support public safety communications, that decision could cost municipalities a considerable amount of money in the long run.

In fact, a study by VDC Research Group examined the costs of buying ruggedized public safety equipment over a five-year timeframe. VDC found that buying ruggedized devices delivers a savings of about $2,000 per year per device thanks to reduced equipment failure and downtime – even though it might initially require a larger upfront investment.
BUILDING THE BUSINESS CASE FOR LTE

Agencies looking to invest in Public Safety LTE systems should consider the profile of applications and devices they plan on bringing onto their network, as well as how these services may evolve over time. A deployment roadmap can then be mapped, also taking into account the investment profile of the agency, the requirements for service control and prioritization and how to best coordinate between public and private network coverage.

WHY APPLICATIONS MATTER
The deployment plan for a LTE network and the density of the sites required is determined largely by the profile of applications being considered for the users. Some applications are bandwidth-intensive and require more capacity while others involve real-time transmission and very low network delay. In both cases, the demands on the network increase and must be compensated for in the network design.

For instance, email attachments and content-rich database queries tend to place high throughput demands on the network while other applications, such as location or voice, require very low delay. Real-time video requires both high bandwidth and short delay and is perhaps the most demanding application on a network. To put it another way, supporting demanding applications like video requires the transmission of enormous amounts of data on one site. In contrast, if you implement low speed data applications, like text messaging or text-based data queries, the coverage area of your sites can be much larger.

That means that municipalities that want to give their first responders guaranteed access to real-time video as they are headed toward a crime scene may need to build more sites than those that want to support applications that are less taxing on the network, such as license plate recognition systems.

THE ROLE OF DEVICES IN NETWORK DESIGN
The selection of LTE devices will also significantly affect network design. A low-powered portable device used primarily at pedestrian speeds has very different network requirements than a vehicle traveling at 80 mph. In addition, a portable device with internal antennas may have difficulty maintaining a high quality signal needed to support bandwidth-intensive applications at the edge of a network while a fixed device with specialized antennas may not experience the same difficulty.

Important consideration must also be given to the requirements for indoor coverage. A network designed to a more aggressive set of requirements to support in-building needs of course ultimately increases the cost of the network.

ASKING THE IMPORTANT QUESTIONS
So what does this mean for public safety and governmental agencies looking to move to 4G LTE broadband? It means your organization must decide key questions such as:

- What range of applications will be offered?
- What role is intended for video in the downlink or uplink?
- What are the various types of devices being considered?
- What profile mix of users will be on the broadband network?
- How will the network be shared among public safety and public service agencies?
- What level of service guarantees and prioritization is required?

Carefully considering these questions will offer agencies the opportunity to work with experienced 4G LTE and public safety communications providers to develop customized business modeling and network dimensioning scenarios. By working with an experienced provider that understands the trade-offs between coverage, capacity, capability and cost, public safety agencies can make the most informed and advantageous decision to meet their specific needs.
WHITE PAPER
THE FUTURE IS NOW: PUBLIC SAFETY LTE COMMUNICATIONS

THE BOTTOM LINE BENEFIT OF “UNMANNED” DEVICES

One key way to offset the costs of future 4G LTE networks is to deploy more “unmanned” devices — such as parking meters, traffic sensors or video surveillance systems. Right now, many cities are already benefitting from these “electronic eyes” which serve as force multipliers and free up invaluable first responder human resources.

The increased bandwidth provided by LTE systems will allow even more of these “unmanned” systems to be deployed. This will enable even greater efficiencies and cost-savings — similar to those provided by these “force multipliers” in use today:

DECREASED CRIME BY 40 PERCENT
The Los Angeles Police Department decreased crime by 40 percent in just one year in its Jordan Downs public housing development after 10 wireless video cameras were installed that allowed patrolling officers to view suspected criminal activity using laptop computers or handheld devices.

RECOVERED 275 STOLEN VEHICLES
California’s Long Beach Police Department recovered 275 stolen vehicles and made 50 additional arrests in just six months after installing four mobile Automated License Plate Recognition (ALPR) systems — without hiring a single extra officer.

ELIMINATED VANDALISM
Video surveillance in Sergnano, Italy, allows the town’s two-man police force to control 100 percent of their territory without moving from the control room. The result? Vandalism has now been completely eliminated. This saved the town so much money that the system paid for itself within 12 months.

INCREASED SITUATIONAL AWARENESS
Abu Dhabi’s Police Force is streaming live video from officers in the field to command centers to heighten visibility of events as they occur and to enable control room operators to better assist officers in responding to calls and solving crimes.

FIGHTING CRIME IN 20 DIFFERENT PLACES AT ONCE
In Ripon, Calif., video surveillance cameras allow officers to check 20 different locations simultaneously every day, helping the officers to be significantly more efficient.

FILING CRASH REPORTS IN EIGHT HOURS INSTEAD OF 18 MONTHS
The State of Iowa now completes crash reports in eight hours instead of 18 months after automating its citation process using wireless.

When designing a LTE system, one key thing to remember is that the cost of a LTE network is determined in large part by the way an organization intends to use the network. By loading up on “force multiplier” applications that are less taxing on the network, such as license plate recognition systems, first responders can quickly realize a return on their broadband investments while also exploring new applications where the true payback has yet to be determined, such as sending video to and from the command center.

That’s why it critical to have a partner that understands the unique needs of public safety agencies and how to balance those needs against the total cost of ownership when designing and building a LTE wireless network.
THE EVOLVING INNOVATIONS OF 4G LTE

The next generation of public safety communications will draw from the resources of all available systems and networks. Integrating the advantages of real-time information offered by LTE with existing ultra secure and reliable voice communications networks will create new and innovative use cases enabling more effective public safety operations. To realize this vision, standard 4G LTE systems, initially designed to carry commercial carrier services, must be enhanced to meet the demanding needs of public safety and provide peace of mind that broadband services can be safely integrated into daily operations. Important requirements include:

LMR TO LTE INTEROPERABILITY
Public safety interoperable gateways bridge LTE and LMR networks, offering a common services engine to mediate across networks and deliver unified services down to collaborative two-way radios and data devices.

MULTI-AGENCY OPERATIONS AND PRIORITIZATION
Multiple agencies sharing common LTE network resources require platform capabilities to secure and manage individual agency information, access, quality of service (QoS) and prioritization as well as dynamically adjusting QoS and prioritization appropriate to incident response.

NETWORK AVAILABILITY AND SURVIVABILITY
Hardened public safety LTE systems self heal and autonomously reconfigure around network failures through Self-Organizing Network (SON) design while interoperability gateways will dynamically steer traffic to the best network based on performance and availability.

PUBLIC SAFETY SCALED AND SIZED
By leveraging the investments and innovations from public carrier solutions, Public Safety LTE systems offer the benefits of economies of scale. Even greater cost efficiencies can be realized by scaling system components more appropriately to public safety network sizing and numbers of users.

DEVICES OPTIMIZED FOR PUBLIC SAFETY
Public safety officials can choose from a portfolio of tiered devices offering the necessary ruggedness and ergonomics for public safety environments. These devices also support various modes of operation from 3G to 4G and private to public for the most flexible operating models.

PUBLIC SAFETY APPLICATIONS
Unified applications accessing common services across LMR and LTE systems optimize public safety workflows from the command center to the edge and allow for real-time, intuitive sharing of rich media content to increase situational awareness and operational efficiency.

The advent of 4G LTE networks make it possible for law enforcement and government officials to use advancements in video and other technologies to do their jobs better than ever before. In essence, LTE systems become a new “tool” in their toolbox that allow them to take their existing productivity-enhancing, crime-fighting and command center communications to a whole new level.

With Public Safety LTE, municipalities can implement new applications to achieve productivity and life-saving enhancements they never even dreamed were possible.
FINDING THE RIGHT PARTNER:
THE MOTOROLA PUBLIC SAFETY LTE ADVANTAGE

Motorola is uniquely positioned to help first responders and government officials fully realize the promise of 4G broadband communications. With more than 80 years of experience in wireless communications, Motorola has earned a solid reputation as the most trusted partner for many public safety and local, state and federal governments. And we have built more than 500 standards-based, public safety networks in 90 countries around the globe.

We are driving the industry’s most comprehensive plan for delivering advanced communications to public safety agencies and the communities they serve. We demonstrated the world’s first public safety applications over a live LTE network in 2008. And followed that with the first demonstration of an over-the-air data session using an in-field public safety network, as well as the first broadband video to the world’s first public safety LTE device, in 2010.

With LTE networks, multimedia-enabled devices and robust applications, you can supplement voice with rich data and video content to empower first responders with the right information when and where it matters most. Whether you need to send tactical maps to responders en route to an incident or stream live video from the scene back to the command center, Motorola Public Safety LTE is a critical ingredient for delivering the unprecedented capabilities of next generation public safety communications.

SAFER CITIES. THRIVING COMMUNITIES

Resources diminish, and become harder to connect. Technology advances, and overwhelms. Threats increase, but we’re not in an arms race. We’re in a communications race.

Within the information flowing between citizens, responders, and agencies is the intelligence that builds a safer city. Motorola can help you collect more of it, make it actionable and securely distribute it across mission critical devices and easy-to-manage networks. It’s the technology and expertise that turns noise into information, information into intelligence, and intelligence into safety. And it’s how to do the absolute most with less — build safer cities, counties and states, and communities that thrive. To find out more, visit motorolasolutions.com/LTE.